
d

e
c

o
n
s
t

r
u

c
t

m
a

i
l
m

a
n

Introduction

This tutorial is all about mailman3 software for creating and

managing mailing lists and archives. It goes in-depth on how

to install mailman3 in a Debian, but applicable for Ubuntu OS

too, and migrate existing lists from older mailman versions.

Also it goes over the installation of mailman website with

apache2 and gunicorn, and offers some tips for uWSGI too. It

assumes that postfix (a Mail Transport Agent, aka MTA) and

mailutils are already installed in the system and configured,

and the system can send emails, e.g the root user is sending

admin related emails. It also assumes that python3, postgresql

and apache2 are installed in the system too. Postfix is one of

the possible MTA to be configured with mailman3. Detailed

steps for configuring a fresh postfix install and few other

MTA options, are included in the CHEAT SHEET note 1.

The tutorial is intended specifically for sysadmins and users

who are curious of how machines and networks work in

general.

Enjoy the geeky reading!

1

Index

Install Dependency Libraries p.3

System Configurations p.7

Mailman Configurations p.9

Postfix Configurations p.12

Run mailman-web locally p.14

Automate mailman and schedule jobs p.15

Migrate lists p.18

Troubleshooting p.20

CHEAT SHEET p.21-22-23

2

Install Dependency Libraries

We enter the remote server and become root user to do

system updates:

$ ssh user@server -i <ssh_key>

Once we are on the remote server we do the following (as

well all the rest of the commands are meant to be ran on

the remote server):

$ sudo su

We give our password and we do the updates:

apt update && apt upgrade

Then we can install some system-wide dependencies:

apt-get install build-essential libssl-dev libffi-dev

break down of the above libraries:

build-essential: GNU debugger, g++/GNU compiler and other

tools for compiling software.

libssl-dev: portion of OpenSSL which supports TLS protocol

and depends on libcrypto, a C API.

libffi-dev: the glue between the interpreter program (python in

this case) and the compiled code, for values of arguments to

be converted and passed in run-time between the two

programs. [Note 3]

3

Install party goes on:

apt install python3-dev python3-venv lynx

break down of the above libraries:

python3-dev: tools for extending the python interpreter and

building python modules.

python3-venv: a tool to create virtual environment to isolate

a python project's dependencies from the OS main python

libraries.

lynx: An HTML to plaintext converter like lynx is required by

Mailman Core for converting emails to plaintext.

Then install rust from source, which is needed for python

Cryptography library later on.

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Ensure that rust is installed:

rust --version

The above script will also install cargo, which is a package

manager, so it fetches any extra dependencies needed for

rust programming, and a builder for rust programs to be

compiled.

[Note 2]

We need also sassc: Syntactically Awesome Stylesheets or

4

Sass is an extension of CSS, which allows using variables,

nested rules etc. Here we install a C/C++ flavor needed for

Hyperkitty archiver that uses sass to generate its CSS styles.

https://sass-lang.com/. For the sass installation for debian,

download from source and make a symbolic link to

/usr/local/bin:

cd /usr/local/lib [Note 4]

wget

https://github.com/sass/dart-sass/releases/download/1.32.5/dart-sass-1

.32.5-linux-x64.tar.gz

tar -xf dart-sass-1.32.5-linux-x64.tar.gz

chmod -R 755 dart-sass

ln -s /usr/local/lib/dart-sass/sass /usr/local/bin/sass

rm -f dart-sass-1.32.5-linux-x64.tar.gz

Ref: Note 5

GNU mailman wiki suggests to install also:

Fail2ban for blocking IP addresses that have too many

connection failures.

apt install fail2ban

Memcached for Django caches in memory, in order to render

mailman's front-end UI faster.

apt install memcached

After installation check that is running at port 11211 with

service memcached status

Output of memcached should show an active status, e.g:

 Loaded: loaded (/lib/systemd/system/memcached.service;

5

enabled; vendor preset: enabled)

 Active: active (running) since Sun 2021-08-29 15:08:13

EEST; 3h 29min ago

Later we see how to add the CACHES configuration in the

mailman settings.py.

Gettext for supporting internationalization and localization,

needed for multilingual environments.

apt install gettext

See configuration settings in CHEAT SHEET [Notes 6, 7, 8]

6

System Configurations

Create a postgresql or mysql database

Here is an example with postgresql. We replace the names

according to our likes and available system paths. Enter the

postgresql user and initiate the psql shell (psql command

requests the postgres user password which was configured

during the postgresql setup). When creating the database, we

can opt for setting up a tablespace where the database

objects are stored. This is handy when we want to migrate

the database because we ran out of disk space. Or when we

want to optimize performance. E.g, make use of a fast solid

state device (SSD) available as a mounted volume.

sudo su postgresql

$ psql

> CREATE TABLESPACE mailman_vol LOCATION

'/ssd1/postgresql/data';

> CREATE DATABASE mailman_db OWNER mailman TABLESPACE

mailman_vol;

> exit;

Setup mailman user and virtualenv

useradd -m -d /opt/mailman -s /usr/bin/bash mailman

sudo su mailman

Enter mailman directory, create a virtualenv and activate it:

7

$ cd ; python3 -m venv venv

$ source /opt/mailman/venv/bin/activate

Note: we can add the above command in .bashrc under

mailman's home, so every time we enter this user, the

virtualenv gets activated automagically.

Install Mailman and other python libraries

(venv)$ pip install wheel mailman

if project connects to a postgresql database then we need

also:

(venv)$ pip install psycopg2-binary

Install front-end UI and archiver

(venv)$ pip install mailman-web mailman-hyperkitty

mailman-web provides hyperkitty and postorius which are built

atop Django, a Python based web framework. It also provides

shortcuts to django admin commands. Later we will create a

superuser that has all permissions for administering the lists

and can enter the admin area via the browser.

Install the following for mailman-web application to be able to

talk with apache2 server (here we opt for gunicorn, other

option is uWSGI) and a python client for Django to connect to

memcached:

(venv)$ pip install gunicorn pylibmc

8

Mailman Configurations

Mailman

Exit mailman user and as root we create a new dir:

mkdir -p /etc/mailman3/

We make owner of this directory the mailman user:

chown -R mailman:mailman /etc/mailman3

and under it, we create the files mailman.cfg and settings.py.

Under /opt/mailman/mm we create the file

mailman-hyperkitty.cfg ('mm' or other name of our choice, it is

a new directory to park hyperkitty configuration and logs).

In the mailman.cfg edit the archiver directive as following:

<conf>

[archiver.hyperkitty]

class: mailman_hyperkitty.Archiver

enable: yes

configuration: /opt/mailman/mm/mailman-hyperkitty.cfg

</conf>

In mailman-hyperkitty.cfg add the base url of the archives as

localhost, and the shared API key, which must be identical to

the value in the /etc/mailman3/settings.py

<conf>

base_url: http://localhost/archives

api_key: SecretArchiverAPIKey

</conf>

For a settings.py sample see in the CHEAT SHEET. The

9

important setting to add, which allows automated

correspondence from the site manager:

<conf>

DEFAULT_FROM_EMAIL = 'lists@sdomain-name.org' or

'user@localhost'

</conf>

And for activating the memcached we need to add:

<conf>

'default': {

 'BACKEND':

'django.core.cache.backends.memcached.MemcachedCache',

 'LOCATION': os.environ.get('CACHE_LOCATION','127.0.0.1:11211'),

 }

}

</conf>

Note 1: django's global settings is located in

/opt/mailman/venv/lib/python3.7/site-packages/django/conf/glo

bal_settings.py. These are imported in the

/etc/mailman3/settings.py and they get overwritten if declared

again in the latter file.

Note 2: If we want to use an external mail service than the

localhost, we need also to set:

<conf>

EMAIL_HOST = <third-party provider>

EMAIL_PORT = 25

EMAIL_HOST_USER = <username>

EMAIL_HOST_PASSWORD = <password>

Extra options to set in case they are needed:

10

EMAIL_TIMEOUT = <time in secs>

EMAIL_USE_TLS = True

OR

EMAIL_USE_SSL = True

</conf>

See Note 9, and an example with gmail see note 10.

If we use local postfix email configuration, then the default

values in global_settings for localhost are fine.

11

Postfix configuration

Check open ports in the system. Look if the smtpd port 25 is

open. Postfix is the MTA which will relay incoming and

outgoing mails to mailman. [Note 11]

$ sudo ss -tulpn | grep smtpd

if postfix is already installed, edit the /etc/postfix/main.cf:

<conf>

inet_interfaces = all

myhostname = server_hostname

mydestination = $myhostname, localhost.$myhostname, localhost

inet_protocols = all

unknown_local_recipient_reject_code = 550

owner_request_special = no

always_add_missing_headers = yes

transport_maps =

 hash:/opt/mailman/mm/var/data/postfix_lmtp

local_recipient_maps =

 hash:/opt/mailman/mm/var/data/postfix_lmtp

relay_domains =

 hash:/opt/mailman/mm/var/data/postfix_domains

default_destination_recipient_limit = 30

default_destination_concurrency_limit = 15

header_checks = regexp:/etc/postfix/header_checks

</conf>

Save and close the file.

12

If we need to install and configure postfix, see note 12.

Now that most of configuration is done, we populate the

mailman_db table with the postorius and hyperkitty fields. To

do so in django, we run the infamous migrations. Enter

mailman user again:

sudo su mailman

(venv) $ cd

(venv) $ mailman-web generate_secret_key

Add the value from the above in the /etc/mailman3/settings.py

SECRET_KEY and run:

(venv)$ mailman-web migrate

collect static files for the mailman-web

(venv)$ mailman-web collectstatic

and create a django admin superuser

(venv)$ mailman-web createsuperuser

13

Run mailman-web locally

(venv) $ pip install Werkzeug

(venv) $ mailman-web runserver_plus

If django runs locally with the above command, we now try

and run it with gunicorn

(venv) $ gunicorn -c /opt/mailman/gunicorn.py

mailman_web.wsgi:application

This runs the django application and listens to port 8000

An example of gunicorn.py:

<conf>

import os

import sys

sys.path[0:0] = [

 '/opt/mailman/',

 '/etc/mailman3/'

]

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'

import gunicorn.app.wsgiapp

if __name__ == '__main__':

 sys.exit(gunicorn.app.wsgiapp.run())

</conf>

[Notes 13, 14, 15]

If we opt for uWSGI instead of gunicorn see note 16.

14

Automate mailman and schedule jobs

System services

Run as daemon the above gunicorn (or uwsgi) command by

adding it as service to persist reboots. As root do:

vi /lib/systemd/system/gunicorn.service

Inside the file add the following:

<conf>

[Unit]

Description=GNU Mailman web interfaces

After=network-online.target firewalld.service

Wants=network-online.target

[Service]

PIDFile=/opt/mailman/mm/var/gunicorn.pid

WorkingDirectory=/opt/mailman/

ExecStart=/opt/mailman/venv/bin/gunicorn -c /opt/mailman/gunicorn.py

mailman_web.wsgi:application

ExecReload=/bin/kill -s HUP $MAINPID

ExecStop=/bin/kill -s QUIT $MAINPID

PrivateTmp=true

User=mailman

Group=mailman

Restart=always

[Install]

15

WantedBy=multi-user.target

</conf>

For Qcluster startup service:

vi /lib/systemd/system/qcluster.service

Inside the file you may add:

<conf>

[Unit]

Description=HyperKitty async tasks runner

After=network-online.target remote-fs.target

[Service]

ExecStart=/opt/mailman/venv/bin/mailman-web qcluster

User=mailman

Restart=always

[Install]

WantedBy=multi-user.target

</conf>

Finally for Mailman core service:

vi /lib/systemd/system/mailman3.service

See sample at note 17

Then we reload the services and check their status

systemctl daemon-reload

systemctl status mailman3

systemctl status gunicorn

systemclt status qcluster

16

Cron jobs

As mailman user

(venv) $ crontab -e

@hourly /opt/mailman/mm/bin/django-admin runjobs hourly

@daily /opt/mailman/mm/bin/django-admin runjobs daily

@weekly /opt/mailman/mm/bin/django-admin runjobs weekly

@monthly /opt/mailman/mm/bin/django-admin runjobs monthly

@yearly /opt/mailman/mm/bin/django-admin runjobs yearly

0,15,30,45 * * * * /opt/mailman/mm/bin/django-admin runjobs

quarter_hourly

* * * * * /opt/mailman/mm/bin/django-admin runjobs minutely

Send periodic digests.

30 3 * * * /opt/mailman/mm/bin/mailman digests --periodic

Send request reminder for MM 3. Like the checkdbs job for 2.1

0 8 * * * /opt/mailman/mm/bin/mailman notify

Apache

Go to /etc/apache2/sites-available and create new

configuration for the domain name of our lists. Check if

proxy_http is enabled and use it for the localhost

mailman-web application. See sample at note 18.

17

Migrate lists

Create ssh keys for old server where existing lists reside:

$ ssh-keygen -t ecdsa -b 521

$ chmod 644 <id_name>.pub # permissions for public key

On the new server, edit /etc/ssh/sshd_config and set

PasswordAuthentication on. As mailman user, under

/opt/mailman, create:

$ mkdir -p ./.ssh && touch ./ssh/authorized_keys && chmod 700 ./ssh

Copy the public key we created from the old server to the

new one (we need mailman's user password):

$ ssh-copy-id mailman@remote-host

Open the sshd_config file and set PasswordAuthentication no

after copying the public key. More info on how to copy ssh

keys securely see note 19.

Copy existing list from old to new server's under a temporary

directory with rsync [Note 20]:

rsync -avz ssh /var/lib/mailman/lists mailman@<new-server>:~/tmp/

rsync -avz ssh /var/lib/mailman/archives

mailman@<new-server>:~/tmp

18

Import old lists

From new server, enter mailman user again. [Note 21]

(venv) $ mailman create foo-list@<new-lists-domain>

(venv) $ mailman import21 foo-list@<new-lists-domain>

~/tmp/lists/foo-list/config.pck

(venv) $ python manage.py hyperkitty_import -l

foo-list@<new-lists-domain>

~/tmp/archives/private/<list>.mbox/<list>.mbox

(venv) $ mailman-web update_index_one_list

foo-list@<new-lists-domain>

19

Troubleshooting

1. Domain name shows as example.com

First we need to login at the web front-end with the

superuser credentials we created before. Then we create a

domain for our site from url <lists-domain>/mailman3/domains/

We copy the site_id number and edit the mailman3/settings.py

accordingly.

We restart gunicorn + apache2 service. Test by creating a

new list from web front-end at <lists-domain>/mailman3/lists/.

[Note 22]

2. mailman web command that shows a bunch of cool actions

$ mailman-web help

3. sass bin executable symbolic link didn't work until I set the

right permissions rwxr-xr-x on the dart-sass/sass binary

4. In the /etc/mailman/mm/mailman-hyperkiitty.cfg file add:

base_url: http://localhost:8000/archives/

If you chose other uri for the archives, modify respectively. It

should match with the url in apache2 configuration. See below

an apache2 sample.

Also add in mailman-hyperkiitty.cfg the same "api_key" as in

the /etc/mailman3/settings.py

20

5. Outgoing mail not sent! It can drive you nuts. Reading AGAIN

the mailman's project postfix configuration. In the mailman.cfg,

the "lmtp_post" should be the domain name or, 127.0.0.1 if all

components are found in the same server.

*** localhost has to be in numeric notation, or postfix

doesn't recognize it!

Also add the domain name of the lists in

"MAILMAN_ARCHIVER_FROM" in the /etc/mailman3/settings.py.

Note 23

6. Static files not being served with apache2 and proxy_http

Place "ProxyPass /static/ !" should come first in the apache2

server configuration, before the proxies to the localhost:8000

urls.

[Note 24]

21

CHEAT SHEET

1. Mail Transport Agent options:

https://mailman.readthedocs.io/en/latest/src/mailman/docs/mta.

html

2. https://doc.rust-lang.org/cargo/guide/why-cargo-exists.html

3. About libfii https://sourceware.org/libffi/

4. sass https://sass-lang.com/install

5.

https://docs.mailman3.org/en/latest/install/virtualenv.html#instal

ling-dependencies

6. GNU mailman3 wiki

https://wiki.list.org/DOC/Howto_Install_Mailman3_On_Debian10

7. fail2ban configure settings

https://www.howtogeek.com/675010/how-to-secure-your-linux-co

mputer-with-fail2ban/

8. Gettext

https://www.gnu.org/software/gettext/manual/html_node/Concep

ts.html#Concepts

9. Email settings for django

https://docs.djangoproject.com/en/3.0/ref/settings/?ref=hacker

noon.com#email-use-tls

10. Example with gmail setup for django:

22

https://www.geekinsta.com/send-email-from-django-using-gmail-s

mtp/

11. Mail server ports

https://serverfault.com/questions/149903/what-ports-to-open-fo

r-mail-server

https://vitux.com/find-open-ports-on-debian/

12. Postfix install and configuration

https://docs.mailman3.org/en/latest/install/virtualenv.html#setup

-mta

13. Mailman django migrations

https://docs.mailman3.org/en/latest/install/virtualenv.html#run-d

atabase-migrations

14. Extra options for setting up the django mailman_web

https://docs.mailman3.org/en/latest/install/virtualenv.html

15. Gunicorn installation and guide

https://docs.gunicorn.org/en/stable/

16. Setting up with uWSGI

https://docs.mailman3.org/en/latest/install/virtualenv.html#settin

g-up-a-wsgi-server

17. Mailman service

https://docs.mailman3.org/en/latest/install/virtualenv.html#starti

ng-mailman-automatically

23

18. Apache2 + gunicorn

https://djangodeployment.readthedocs.io/en/latest/05-static-file

s.html?highlight=apache2#setting-up-apache

19. https://www.simplified.guide/ssh/copy-public-key

20. https://docs.rc.fas.harvard.edu/kb/rsync/

21. Mailman import commands

https://docs.mailman3.org/en/latest/migration.html#upgrade-strat

egy

22.

https://docs.mailman3.org/en/latest/faq.html#the-domain-name-di

splayed-in-hyperkitty-shows-example-com-or-something-else

23. Mail server setup:

https://docs.mailman3.org/projects/mailman/en/latest/src/mailm

an/docs/mta.html

24. ProxyPass troubleshooting

/https://stackoverflow.com/questions/50621464/deploy-django-s

tatic-files-with-apache-

gunicorn

25. mailman commands

https://docs.mailman3.org/projects/mailman/en/latest/src/mailm

an/commands/docs/commands.html

24

This manual is created by m4ra and is part of

the tech-zines collection of

psaroskalazines.gr

Layout design is generated in Python by the

author

Code repository at

git.systerserver.net/mara/zine_maker

Cover and colophon font is Casale Two NBP

Content font is KpProgrammerAlternatesNbp

Code blocks font is Helvetica

Zine is released in the Public Domain

